Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Ann Med ; 55(1): 2195204, 2023 12.
Article in English | MEDLINE | ID: covidwho-2295530

ABSTRACT

BACKGROUND: Hospitalized patients with coronavirus disease 2019 (COVID-19) can be classified into different clinical phenotypes based on their demographic, clinical, radiology, and laboratory features. We aimed to validate in an external cohort of hospitalized COVID-19 patients the prognostic value of a previously described phenotyping system (FEN-COVID-19) and to assess the reproducibility of phenotypes development as a secondary analysis. METHODS: Patients were classified in phenotypes A, B or C according to the severity of oxygenation impairment, inflammatory response, hemodynamic and laboratory tests according to the FEN-COVID-19 method. RESULTS: Overall, 992 patients were included in the study, and 181 (18%), 757 (76%) and 54 (6%) of them were assigned to the FEN-COVID-19 phenotypes A, B, and C, respectively. An association with mortality was observed for phenotype C vs. A (hazard ratio [HR] 3.10, 95% confidence interval [CI] 1.81-5.30, p < 0.001) and for phenotype C vs. B (HR 2.20, 95% CI 1.50-3.23, p < 0.001). A non-statistically significant trend towards higher mortality was also observed for phenotype B vs. A (HR 1.41; 95% CI 0.92-2.15, p = 0.115). By means of cluster analysis, three different phenotypes were also identified in our cohort, with an overall similar gradient in terms of prognostic impact to that observed when patients were assigned to FEN-COVID-19 phenotypes. CONCLUSIONS: The prognostic impact of FEN-COVID-19 phenotypes was confirmed in our external cohort, although with less difference in mortality between phenotypes A and B than in the original study.


Hospitalized patients with COVID-19 can be classified into different clinical phenotypes based on their demographic, clinical, radiology, and laboratory featuresIn this study, we externally confirmed the prognostic impact of clinical phenotypes previously identified by Gutierrez-Gutierrez and colleagues in a Spanish cohort of hospitalized patients with COVID-19, and the usefulness of their simplified probabilistic model for phenotypes assignmentThis could indirectly support the validity of both phenotype's development and their extrapolation to other hospitals and countries for management decisions during other possible future viral pandemics.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , Prognosis , SARS-CoV-2 , Reproducibility of Results , Proportional Hazards Models , Retrospective Studies
2.
Neurol Sci ; 43(11): 6159-6166, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2014175

ABSTRACT

INTRODUCTION: During the COVID-19 pandemic, electroencephalography (EEG) proved to be a useful tool to demonstrate brain involvement. Many studies reported non-reactive generalized slowing as the most frequent pattern and epileptiform activity in a minority of patients. OBJECTIVE: To investigate the prevalence of diffuse unreactive background attenuation or suppression and its correlation with outcome in a cohort of COVID-19 patients. METHODS: The EEGs recorded during the first year of the COVID-19 pandemic were retrospectively evaluated to identify the main pattern and focus on the occurrence of a low-voltage background, either attenuated (10-20 µV) or suppressed (< 10 µV). We sought a correlation between in-hospital mortality and low-voltage EEG. In a subsample of patients, biomarkers of inflammation, hypoxemia and organ failure were collected. Brain imaging was also evaluated. RESULTS: Among 98 EEG performed in 50 consecutive patients, diffuse unreactive slowing was the most prevalent pattern (54%), followed by unreactive attenuation or suppression pattern (26%), being the latter significantly correlated with an unfavourable outcome (p = 0.0004). Survivors showed significantly lower interleukine-6 values compared to non-survivors. Patients with attenuated EEG and non-survivors also showed lower PaO2/FiO2 values. Neuroradiological findings were very heterogeneous with a prevalence of lesions suggestive of a microangiopathic substrate. CONCLUSIONS: EEG attenuation or suppression may be more frequent than previously reported and significantly associated with a poor outcome. SARS-CoV-2 infection may result in encephalopathy and reduced EEG voltage through mechanisms that are still unknown but deserve attention given its negative impact on prognosis.


Subject(s)
COVID-19 , Humans , Pandemics , Retrospective Studies , SARS-CoV-2 , Electroencephalography/methods
3.
Infect Dis Ther ; 11(3): 1149-1160, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1783017

ABSTRACT

INTRODUCTION: Candida auris (C. auris) is an emerging nosocomial pathogen, and a sharp rise in cases of colonization and infection has been registered in intensive care units (ICUs) during the ongoing coronavirus disease 2019 (COVID-19) pandemic. The unfavorable resistance profile of C. auris and the potential high mortality of C. auris infections represent an important challenge for physicians. METHODS: We conducted a single-center retrospective study including all patients admitted to ICUs with isolation of C. auris in any non-sterile body site between February 20, 2020, and May 31, 2021. The primary aim of the study was to assess the cumulative incidence of C. auris candidemia in colonized patients. The secondary aim was to identify predictors of C. auris candidemia in the study population. RESULTS: During the study period, 157 patients admitted to ICUs in our hospital became colonized with C. auris; 59% of them were affected by COVID-19. Overall, 27 patients (17%) developed C. auris candidemia. The cumulative risk of developing C. auris candidemia was > 25% at 60 days after first detection of C. auris colonization. Seven patients with C. auris candidemia (26%) also developed a late recurrent episode. All C. auris blood isolates during the first occurring episode were resistant to fluconazole and susceptible to echinocandins, while 15 (56%) were resistant to amphotericin B. During late recurrent episodes, emergent resistance to caspofungin and amphotericin B occurred in one case each. In the final multivariable model, only multisite colonization retained an independent association with the development of C. auris candidemia. CONCLUSION: Candida auris candidemia may occur in up to one fourth of colonized critically ill patients, and multisite colonization is an independent risk factor for the development of candidemia. Implementing adequate infection control measures remains crucial to prevent colonization with C. auris and indirectly the subsequent development of infection.

4.
Front Med (Lausanne) ; 9: 823837, 2022.
Article in English | MEDLINE | ID: covidwho-1775695

ABSTRACT

Background: Several cases of adverse reactions following vaccination for coronavirus disease 2019 (COVID-19) with adenoviral vector vaccines or mRNA-based vaccines have been reported to date. The underlying syndrome has been named "vaccine-induced immune thrombotic thrombocytopenia" (VITT) or "thrombosis with thrombocytopenia syndrome (TTS)" with different clinical manifestations. Methods: We report the clinical course of five patients who had severe adverse reactions to COVID-19 vaccines, either with VITT/TTS, abdominal or pulmonary thrombosis after adenoviral vaccines, or Stevens' Johnson syndrome because of mRNA vaccination, all of whom required admission to the intensive care unit (ICU). Conclusions: All patients with severe or life-threatening suspected reaction to different types of COVID-19 vaccination required ICU admission. A prompt evaluation of early symptoms and individualized clinical management is needed to improve outcomes.

5.
Respir Physiol Neurobiol ; 301: 103889, 2022 07.
Article in English | MEDLINE | ID: covidwho-1747608

ABSTRACT

PURPOSE: To describe the effects of timing of intubation in COVID-19 patients that fail helmet continuous positive airway pressure (h-CPAP) on progression and severity of disease. METHODS: COVID-19 patients that failed h-CPAP, required intubation, and underwent chest computed tomography (CT) at two levels of positive end-expiratory pressure (PEEP, 8 and 16 cmH2O) were included in this retrospective study. Patients were divided in two groups (early versus late) based on the duration of h-CPAP before intubation. Endpoints included percentage of non-aerated lung tissue at PEEP of 8 cmH2O, respiratory system compliance and oxygenation. RESULTS: Fifty-two patients were included and classified in early (h-CPAP for ≤2 days, N = 26) and late groups (h-CPAP for >2 days, N = 26). Patients in the late compared to early intubation group presented: 1) lower respiratory system compliance (median difference, MD -7 mL/cmH2O, p = 0.044) and PaO2/FiO2 (MD -29 mmHg, p = 0.047), 2) higher percentage of non-aerated lung tissue (MD 7.2%, p = 0.023) and 3) similar lung recruitment increasing PEEP from 8 to 16 cmH2O (MD 0.1%, p = 0.964). CONCLUSIONS: In COVID-19 patients receiving h-CPAP, late intubation was associated with worse clinical presentation at ICU admission and more advanced disease. The possible detrimental effects of delaying intubation should be carefully considered in these patients.


Subject(s)
COVID-19 , Continuous Positive Airway Pressure , COVID-19/therapy , Humans , Intubation, Intratracheal , Retrospective Studies , Tomography, X-Ray Computed
6.
Microorganisms ; 10(2)2022 Feb 04.
Article in English | MEDLINE | ID: covidwho-1674731

ABSTRACT

Reactivation of herpes simplex virus type 1 (HSV-1) has been described in critically ill patients with coronavirus disease 2019 (COVID-19) pneumonia. In the present two-center retrospective experience, we primarily aimed to assess the cumulative risk of HSV-1 reactivation detected on bronchoalveolar fluid (BALF) samples in invasively ventilated COVID-19 patients with worsening respiratory function. The secondary objectives were the identification of predictors for HSV-1 reactivation and the assessment of its possible prognostic impact. Overall, 41 patients met the study inclusion criteria, and 12/41 patients developed HSV-1 reactivation (29%). No independent predictors of HSV-1 reactivation were identified in the present study. No association was found between HSV-1 reactivation and mortality. Eleven out of 12 patients with HSV-1 reactivation received antiviral therapy with intravenous acyclovir. In conclusion, HSV-1 reactivation is frequently detected in intubated patients with COVID-19. An antiviral treatment in COVID-19 patients with HSV-1 reactivation and worsening respiratory function might be considered.

7.
Ann Med ; 53(1): 1779-1786, 2021 12.
Article in English | MEDLINE | ID: covidwho-1462157

ABSTRACT

BACKGROUND: An unexpected high prevalence of enterococcal bloodstream infection (BSI) has been observed in critically ill patients with COVID-19 in the intensive care unit (ICU). MATERIALS AND METHODS: The primary objective was to describe the characteristics of ICU-acquired enterococcal BSI in critically ill patients with COVID-19. A secondary objective was to exploratorily assess the predictors of 30-day mortality in critically ill COVID-19 patients with ICU-acquired enterococcal BSI. RESULTS: During the study period, 223 patients with COVID-19 were admitted to COVID-19-dedicated ICUs in our centre. Overall, 51 episodes of enterococcal BSI, occurring in 43 patients, were registered. 29 (56.9%) and 22 (43.1%) BSI were caused by Enterococcus faecalis and Enterococcus faecium, respectively. The cumulative incidence of ICU-acquired enterococcal BSI was of 229 episodes per 1000 ICU admissions (95% mid-p confidence interval [CI] 172-298). Most patients received an empirical therapy with at least one agent showing in vitro activity against the blood isolate (38/43, 88%). The crude 30-day mortality was 42% (18/43) and 57% (4/7) in the entire series and in patients with vancomycin-resistant E. faecium BSI, respectively. The sequential organ failure assessment (SOFA) score showed an independent association with increased mortality (odds ratio 1.32 per one-point increase, with 95% confidence interval 1.04-1.66, p = .021). CONCLUSIONS: The cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19. Our results suggest a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.KEY MESSAGESThe cumulative incidence of enterococcal BSI is high in critically ill patients with COVID-19.The crude 30-day mortality of enterococcal BSI in critically ill patients with COVID-19 may be higher than 40%.There could be a crucial role of the severity of the acute clinical conditions, to which both the underlying viral pneumonia and the enterococcal BSI may contribute, in majorly influencing the outcome.


Subject(s)
Bacteremia/epidemiology , COVID-19/epidemiology , Cross Infection/epidemiology , Enterococcus faecalis , Enterococcus faecium , Gram-Positive Bacterial Infections/epidemiology , Mortality , Vancomycin-Resistant Enterococci , Aged , Bacteremia/microbiology , Critical Illness , Female , Gram-Positive Bacterial Infections/microbiology , Humans , Intensive Care Units , Male , Microbial Sensitivity Tests , Middle Aged , Organ Dysfunction Scores , Retrospective Studies , SARS-CoV-2
8.
Crit Care ; 25(1): 214, 2021 06 21.
Article in English | MEDLINE | ID: covidwho-1440944

ABSTRACT

BACKGROUND: Critically ill COVID-19 patients have pathophysiological lung features characterized by perfusion abnormalities. However, to date no study has evaluated whether the changes in the distribution of pulmonary gas and blood volume are associated with the severity of gas-exchange impairment and the type of respiratory support (non-invasive versus invasive) in patients with severe COVID-19 pneumonia. METHODS: This was a single-center, retrospective cohort study conducted in a tertiary care hospital in Northern Italy during the first pandemic wave. Pulmonary gas and blood distribution was assessed using a technique for quantitative analysis of dual-energy computed tomography. Lung aeration loss (reflected by percentage of normally aerated lung tissue) and the extent of gas:blood volume mismatch (percentage of non-aerated, perfused lung tissue-shunt; aerated, non-perfused dead space; and non-aerated/non-perfused regions) were evaluated in critically ill COVID-19 patients with different clinical severity as reflected by the need for non-invasive or invasive respiratory support. RESULTS: Thirty-five patients admitted to the intensive care unit between February 29th and May 30th, 2020 were included. Patients requiring invasive versus non-invasive mechanical ventilation had both a lower percentage of normally aerated lung tissue (median [interquartile range] 33% [24-49%] vs. 63% [44-68%], p < 0.001); and a larger extent of gas:blood volume mismatch (43% [30-49%] vs. 25% [14-28%], p = 0.001), due to higher shunt (23% [15-32%] vs. 5% [2-16%], p = 0.001) and non-aerated/non perfused regions (5% [3-10%] vs. 1% [0-2%], p = 0.001). The PaO2/FiO2 ratio correlated positively with normally aerated tissue (ρ = 0.730, p < 0.001) and negatively with the extent of gas-blood volume mismatch (ρ = - 0.633, p < 0.001). CONCLUSIONS: In critically ill patients with severe COVID-19 pneumonia, the need for invasive mechanical ventilation and oxygenation impairment were associated with loss of aeration and the extent of gas:blood volume mismatch.


Subject(s)
Blood Volume/physiology , COVID-19/diagnostic imaging , COVID-19/metabolism , Lung/diagnostic imaging , Lung/metabolism , Pulmonary Gas Exchange/physiology , Aged , Blood Gas Analysis/methods , COVID-19/epidemiology , Cohort Studies , Critical Illness/epidemiology , Female , Humans , Italy/epidemiology , Male , Middle Aged , Respiration, Artificial/methods , Retrospective Studies , Tomography, X-Ray Computed/methods
9.
Front Neurol ; 12: 674466, 2021.
Article in English | MEDLINE | ID: covidwho-1295668

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) patients are at high risk of neurological complications consequent to several factors including persistent hypotension. There is a paucity of data on the effects of therapeutic interventions designed to optimize systemic hemodynamics on cerebral autoregulation (CA) in this group of patients. Methods: Single-center, observational prospective study conducted at San Martino Policlinico Hospital, Genoa, Italy, from October 1 to December 15, 2020. Mechanically ventilated COVID-19 patients, who had at least one episode of hypotension and received a passive leg raising (PLR) test, were included. They were then treated with fluid challenge (FC) and/or norepinephrine (NE), according to patients' clinical conditions, at different moments. The primary outcome was to assess the early effects of PLR test and of FC and NE [when clinically indicated to maintain adequate mean arterial pressure (MAP)] on CA (CA index) measured by transcranial Doppler (TCD). Secondary outcomes were to evaluate the effects of PLR test, FC, and NE on systemic hemodynamic variables, cerebral oxygenation (rSo2), and non-invasive intracranial pressure (nICP). Results: Twenty-three patients were included and underwent PLR test. Of these, 22 patients received FC and 14 were treated with NE. The median age was 62 years (interquartile range = 57-68.5 years), and 78% were male. PLR test led to a low CA index [58% (44-76.3%)]. FC and NE administration resulted in a CA index of 90.8% (74.2-100%) and 100% (100-100%), respectively. After PLR test, nICP based on pulsatility index and nICP based on flow velocity diastolic formula was increased [18.6 (17.7-19.6) vs. 19.3 (18.2-19.8) mm Hg, p = 0.009, and 12.9 (8.5-18) vs. 15 (10.5-19.7) mm Hg, p = 0.001, respectively]. PLR test, FC, and NE resulted in a significant increase in MAP and rSo2. Conclusions: In mechanically ventilated severe COVID-19 patients, PLR test adversely affects CA. An individualized strategy aimed at assessing both the hemodynamic and cerebral needs is warranted in patients at high risk of neurological complications.

10.
Front Med (Lausanne) ; 8: 671714, 2021.
Article in English | MEDLINE | ID: covidwho-1278412

ABSTRACT

In late December 2019, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) quickly spread worldwide, and the syndrome it causes, coronavirus disease 2019 (COVID-19), has reached pandemic proportions. Around 30% of patients with COVID-19 experience severe respiratory distress and are admitted to the intensive care unit for comprehensive critical care. Patients with COVID-19 often present an enhanced immune response with a hyperinflammatory state characterized by a "cytokine storm," which may reflect changes in the microbiota composition. Moreover, the evolution to acute respiratory distress syndrome (ARDS) may increase the severity of COVID-19 and related dysbiosis. During critical illness, the multitude of therapies administered, including antibiotics, sedatives, analgesics, body position, invasive mechanical ventilation, and nutritional support, may enhance the inflammatory response and alter the balance of patients' microbiota. This status of dysbiosis may lead to hyper vulnerability in patients and an inappropriate response to critical circumstances. In this context, the aim of our narrative review is to provide an overview of possible interaction between patients' microbiota dysbiosis and clinical status of severe COVID-19 with ARDS, taking into consideration the characteristic hyperinflammatory state of this condition, respiratory distress, and provide an overview on possible nutritional strategies for critically ill patients with COVID-19-ARDS.

11.
BMC Infect Dis ; 21(1): 353, 2021 Apr 15.
Article in English | MEDLINE | ID: covidwho-1190057

ABSTRACT

BACKGROUND: The primary objective of the study is to describe the cellular characteristics of bronchoalveolar lavage fluid (BALF) of COVID-19 patients requiring invasive mechanical ventilation; the secondary outcome is to describe BALF findings between survivors vs non-survivors. MATERIALS AND METHODS: Patients positive for SARS-CoV-2 RT PCR, admitted to ICU between March and April 2020 were enrolled. At ICU admission, BALF were analyzed by flow cytometry. Univariate, multivariate and Spearman correlation analyses were performed. RESULTS: Sixty-four patients were enrolled, median age of 64 years (IQR 58-69). The majority cells in the BALF were neutrophils (70%, IQR 37.5-90.5) and macrophages (27%, IQR 7-49) while a minority were lymphocytes, 1%, TCD3+ 92% (IQR 82-95). The ICU mortality was 32.8%. Non-survivors had a significantly older age (p = 0.033) and peripheral lymphocytes (p = 0.012) were lower compared to the survivors. At multivariate analysis the percentage of macrophages in the BALF correlated with poor outcome (OR 1.336, CI95% 1.014-1.759, p = 0.039). CONCLUSIONS: In critically ill patients, BALF cellularity is mainly composed of neutrophils and macrophages. The macrophages percentage in the BALF at ICU admittance correlated with higher ICU mortality. The lack of lymphocytes in BALF could partly explain a reduced anti-viral response.


Subject(s)
Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/epidemiology , COVID-19/immunology , Leukocyte Count , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Respiration, Artificial , Adult , Aged , Bronchoalveolar Lavage Fluid/virology , COVID-19/mortality , COVID-19/virology , Critical Illness/epidemiology , Female , Humans , Intensive Care Units , Italy/epidemiology , Lymphocytes/cytology , Macrophages/cytology , Male , Middle Aged , Neutrophils/cytology , Pneumonia, Viral/mortality , Pneumonia, Viral/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Survivors/statistics & numerical data , Treatment Outcome
12.
Crit Care ; 25(1): 111, 2021 03 19.
Article in English | MEDLINE | ID: covidwho-1143245

ABSTRACT

BACKGROUND: In COVID-19 patients with acute respiratory distress syndrome (ARDS), the effectiveness of ventilatory rescue strategies remains uncertain, with controversial efficacy on systemic oxygenation and no data available regarding cerebral oxygenation and hemodynamics. METHODS: This is a prospective observational study conducted at San Martino Policlinico Hospital, Genoa, Italy. We included adult COVID-19 patients who underwent at least one of the following rescue therapies: recruitment maneuvers (RMs), prone positioning (PP), inhaled nitric oxide (iNO), and extracorporeal carbon dioxide (CO2) removal (ECCO2R). Arterial blood gas values (oxygen saturation [SpO2], partial pressure of oxygen [PaO2] and of carbon dioxide [PaCO2]) and cerebral oxygenation (rSO2) were analyzed before (T0) and after (T1) the use of any of the aforementioned rescue therapies. The primary aim was to assess the early effects of different ventilatory rescue therapies on systemic and cerebral oxygenation. The secondary aim was to evaluate the correlation between systemic and cerebral oxygenation in COVID-19 patients. RESULTS: Forty-five rescue therapies were performed in 22 patients. The median [interquartile range] age of the population was 62 [57-69] years, and 18/22 [82%] were male. After RMs, no significant changes were observed in systemic PaO2 and PaCO2 values, but cerebral oxygenation decreased significantly (52 [51-54]% vs. 49 [47-50]%, p < 0.001). After PP, a significant increase was observed in PaO2 (from 62 [56-71] to 82 [76-87] mmHg, p = 0.005) and rSO2 (from 53 [52-54]% to 60 [59-64]%, p = 0.005). The use of iNO increased PaO2 (from 65 [67-73] to 72 [67-73] mmHg, p = 0.015) and rSO2 (from 53 [51-56]% to 57 [55-59]%, p = 0.007). The use of ECCO2R decreased PaO2 (from 75 [75-79] to 64 [60-70] mmHg, p = 0.009), with reduction of rSO2 values (59 [56-65]% vs. 56 [53-62]%, p = 0.002). In the whole population, a significant relationship was found between SpO2 and rSO2 (R = 0.62, p < 0.001) and between PaO2 and rSO2 (R0 0.54, p < 0.001). CONCLUSIONS: Rescue therapies exert specific pathophysiological mechanisms, resulting in different effects on systemic and cerebral oxygenation in critically ill COVID-19 patients with ARDS. Cerebral and systemic oxygenation are correlated. The choice of rescue strategy to be adopted should take into account both lung and brain needs. Registration The study protocol was approved by the ethics review board (Comitato Etico Regione Liguria, protocol n. CER Liguria: 23/2020).


Subject(s)
COVID-19/therapy , Cerebrovascular Circulation , Oxygen/blood , Respiration, Artificial , Respiratory Distress Syndrome/therapy , Aged , COVID-19/complications , Female , Humans , Italy , Male , Middle Aged , Prospective Studies , Respiratory Distress Syndrome/virology , Treatment Outcome
13.
Crit Care ; 25(1): 81, 2021 02 24.
Article in English | MEDLINE | ID: covidwho-1102346

ABSTRACT

BACKGROUND: There is a paucity of data concerning the optimal ventilator management in patients with COVID-19 pneumonia; particularly, the optimal levels of positive-end expiratory pressure (PEEP) are unknown. We aimed to investigate the effects of two levels of PEEP on alveolar recruitment in critically ill patients with severe COVID-19 pneumonia. METHODS: A single-center cohort study was conducted in a 39-bed intensive care unit at a university-affiliated hospital in Genoa, Italy. Chest computed tomography (CT) was performed to quantify aeration at 8 and 16 cmH2O PEEP. The primary endpoint was the amount of alveolar recruitment, defined as the change in the non-aerated compartment at the two PEEP levels on CT scan. RESULTS: Forty-two patients were included in this analysis. Alveolar recruitment was median [interquartile range] 2.7 [0.7-4.5] % of lung weight and was not associated with excess lung weight, PaO2/FiO2 ratio, respiratory system compliance, inflammatory and thrombophilia markers. Patients in the upper quartile of recruitment (recruiters), compared to non-recruiters, had comparable clinical characteristics, lung weight and gas volume. Alveolar recruitment was not different in patients with lower versus higher respiratory system compliance. In a subgroup of 20 patients with available gas exchange data, increasing PEEP decreased respiratory system compliance (median difference, MD - 9 ml/cmH2O, 95% CI from - 12 to - 6 ml/cmH2O, p < 0.001) and the ventilatory ratio (MD - 0.1, 95% CI from - 0.3 to - 0.1, p = 0.003), increased PaO2 with FiO2 = 0.5 (MD 24 mmHg, 95% CI from 12 to 51 mmHg, p < 0.001), but did not change PaO2 with FiO2 = 1.0 (MD 7 mmHg, 95% CI from - 12 to 49 mmHg, p = 0.313). Moreover, alveolar recruitment was not correlated with improvement of oxygenation or venous admixture. CONCLUSIONS: In patients with severe COVID-19 pneumonia, higher PEEP resulted in limited alveolar recruitment. These findings suggest limiting PEEP strictly to the values necessary to maintain oxygenation, thus avoiding the use of higher PEEP levels.


Subject(s)
COVID-19/complications , Pneumonia, Viral/therapy , Positive-Pressure Respiration , Pulmonary Alveoli/physiology , Aged , COVID-19/diagnostic imaging , COVID-19/epidemiology , COVID-19/physiopathology , Cohort Studies , Female , Humans , Italy/epidemiology , Male , Middle Aged , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/virology , Pulmonary Alveoli/diagnostic imaging , Severity of Illness Index , Tomography, X-Ray Computed , Treatment Outcome
14.
J Clin Med ; 10(4)2021 Feb 03.
Article in English | MEDLINE | ID: covidwho-1060487

ABSTRACT

The primary objective of this multicenter, observational, retrospective study was to assess the incidence rate of ventilator-associated pneumonia (VAP) in coronavirus disease 2019 (COVID-19) patients in intensive care units (ICU). The secondary objective was to assess predictors of 30-day case-fatality of VAP. From 15 February to 15 May 2020, 586 COVID-19 patients were admitted to the participating ICU. Of them, 171 developed VAP (29%) and were included in the study. The incidence rate of VAP was of 18 events per 1000 ventilator days (95% confidence intervals [CI] 16-21). Deep respiratory cultures were available and positive in 77/171 patients (45%). The most frequent organisms were Pseudomonas aeruginosa (27/77, 35%) and Staphylococcus aureus (18/77, 23%). The 30-day case-fatality of VAP was 46% (78/171). In multivariable analysis, septic shock at VAP onset (odds ratio [OR] 3.30, 95% CI 1.43-7.61, p = 0.005) and acute respiratory distress syndrome at VAP onset (OR 13.21, 95% CI 3.05-57.26, p < 0.001) were associated with fatality. In conclusion, VAP is frequent in critically ill COVID-19 patients. The related high fatality is likely the sum of the unfavorable prognostic impacts of the underlying viral and the superimposed bacterial diseases.

15.
Infect Dis Ther ; 10(1): 387-398, 2021 Mar.
Article in English | MEDLINE | ID: covidwho-1014253

ABSTRACT

BACKGROUND: The goal of this study was to investigate the prevalence and factors associated with persistent viral shedding (PVS) in hospitalized patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: This was a prospective observational study including all consecutive adults hospitalized with SARS-CoV-2 infection. When the first nasopharyngeal swab was positive for SARS-CoV-2 RNA (day 0), additional samples were obtained on days + 3, + 5, + 7 and then once every 7 days until virus detection was negative. PVS was defined as the duration of shedding of at least 21 days after diagnosis. The primary endpoint of this study was the prevalence of PVS. RESULTS: Data were obtained regarding 121 consecutive hospitalized patients with SARS-CoV-2 infection (median age 66 years, male sex 65.3%). Overall, the prevalence of PVS was 38% (46/121 patients). According to univariate analysis, factors associated with PVS were immunosuppression (6.7% vs 21.7%, p = 0.02), increased interleukin-6 (IL-6) levels (≥ 35 ng/ml) at the time of diagnosis (43.4% vs 67.3%, p = 0.02), time from onset of symptoms to diagnosis (median days 7.0 vs 3.5, p = 0.001), intensive care unit admission (22.7% vs 43.5%, p = 0.02), and need for invasive mechanical ventilation (20.0% vs 41.3%, p = 0.01). The multivariate analysis indicated that immunosuppression, increased IL-6 levels at the time of diagnosis, time from onset of symptoms to diagnosis, and need for mechanical ventilation were independent factors associated with PVS. CONCLUSIONS: PVS was detected in up to 38% of hospitalized patients with SARS-CoV-2 infection and was strongly associated with immunosuppression, increased IL-6 levels, and the need for mechanical ventilation.

16.
J Clin Med ; 10(1)2021 Jan 03.
Article in English | MEDLINE | ID: covidwho-1011566

ABSTRACT

In critically ill patients with acute respiratory distress syndrome (ARDS) coronavirus disease 2019 (COVID-19), a high incidence of thromboembolic and hemorrhagic events is reported. COVID-19 may lead to impairment of the coagulation cascade, with an imbalance in platelet function and the regulatory mechanisms of coagulation and fibrinolysis. Clinical manifestations vary from a rise in laboratory markers and subclinical microthrombi to thromboembolic events, bleeding, and disseminated intravascular coagulation. After an inflammatory trigger, the mechanism for activation of the coagulation cascade in COVID-19 is the tissue factor pathway, which causes endotoxin and tumor necrosis factor-mediated production of interleukins and platelet activation. The consequent massive infiltration of activated platelets may be responsible for inflammatory infiltrates in the endothelial space, as well as thrombocytopenia. The variety of clinical presentations of the coagulopathy confronts the clinician with the difficult questions of whether and how to provide optimal supportive care. In addition to coagulation tests, advanced laboratory tests such as protein C, protein S, antithrombin, tissue factor pathway inhibitors, D-dimers, activated factor Xa, and quantification of specific coagulation factors can be useful, as can thromboelastography or thromboelastometry. Treatment should be tailored, focusing on the estimated risk of bleeding and thrombosis. The aim of this review is to explore the pathophysiology and clinical evidence of coagulation disorders in severe ARDS-related COVID-19 patients.

17.
Front Neurol ; 11: 602114, 2020.
Article in English | MEDLINE | ID: covidwho-983702

ABSTRACT

Purpose: The incidence and the clinical presentation of neurological manifestations of coronavirus disease-2019 (COVID-19) remain unclear. No data regarding the use of neuromonitoring tools in this group of patients are available. Methods: This is a retrospective study of prospectively collected data. The primary aim was to assess the incidence and the type of neurological complications in critically ill COVID-19 patients and their effect on survival as well as on hospital and intensive care unit (ICU) length of stay. The secondary aim was to describe cerebral hemodynamic changes detected by noninvasive neuromonitoring modalities such as transcranial Doppler, optic nerve sheath diameter (ONSD), and automated pupillometry. Results: Ninety-four patients with COVID-19 admitted to an ICU from February 28 to June 30, 2020, were included in this study. Fifty-three patients underwent noninvasive neuromonitoring. Neurological complications were detected in 50% of patients, with delirium as the most common manifestation. Patients with neurological complications, compared to those without, had longer hospital (36.8 ± 25.1 vs. 19.4 ± 16.9 days, p < 0.001) and ICU (31.5 ± 22.6 vs. 11.5±10.1 days, p < 0.001) stay. The duration of mechanical ventilation was independently associated with the risk of developing neurological complications (odds ratio 1.100, 95% CI 1.046-1.175, p = 0.001). Patients with increased intracranial pressure measured by ONSD (19% of the overall population) had longer ICU stay. Conclusions: Neurological complications are common in critically ill patients with COVID-19 receiving invasive mechanical ventilation and are associated with prolonged ICU length of stay. Multimodal noninvasive neuromonitoring systems are useful tools for the early detection of variations in cerebrovascular parameters in COVID-19.

18.
Clin Microbiol Infect ; 26(11): 1537-1544, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-764424

ABSTRACT

OBJECTIVES: To describe clinical characteristics, management and outcome of individuals with coronavirus disease 2019 (COVID-19); and to evaluate risk factors for all-cause in-hospital mortality. METHODS: This retrospective study from a University tertiary care hospital in northern Italy, included hospitalized adult patients with a diagnosis of COVID-19 between 25 February 2020 and 25 March 2020. RESULTS: Overall, 317 individuals were enrolled. Their median age was 71 years and 67.2% were male (213/317). The most common underlying diseases were hypertension (149/317; 47.0%), cardiovascular disease (63/317; 19.9%) and diabetes (49/317; 15.5%). Common symptoms at the time of COVID-19 diagnosis included fever (285/317; 89.9%), shortness of breath (167/317; 52.7%) and dry cough (156/317; 49.2%). An 'atypical' presentation including at least one among mental confusion, diarrhoea or nausea and vomiting was observed in 53/317 patients (16.7%). Hypokalaemia occurred in 25.8% (78/302) and 18.5% (56/303) had acute kidney injury. During hospitalization, 111/317 patients (35.0%) received non-invasive respiratory support, 65/317 (20.5%) were admitted to the intensive care unit (ICU) and 60/317 (18.5%) required invasive mechanical ventilation. All-cause in-hospital mortality, assessed in 275 patients, was 43.6% (120/275). On multivariable analysis, age (per-year increase OR 1.07; 95% CI 1.04-1.10; p < 0.001), cardiovascular disease (OR 2.58; 95% CI 1.07-6.25; p 0.03), and C-reactive protein levels (per-point increase OR 1.009; 95% CI 1.004-1.014; p 0.001) were independent risk factors for all-cause in-hospital mortality. CONCLUSIONS: COVID-19 mainly affected elderly patients with predisposing conditions and caused severe illness, frequently requiring non-invasive respiratory support or ICU admission. Despite supportive care, COVID-19 remains associated with a substantial risk of all-cause in-hospital mortality.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Pneumonia, Viral/diagnosis , Pneumonia, Viral/mortality , Aged , Aged, 80 and over , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Cause of Death , Clinical Laboratory Techniques , Coronavirus Infections/drug therapy , Coronavirus Infections/epidemiology , Coronavirus Infections/therapy , Female , Hospital Mortality , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/therapy , Retrospective Studies , Risk Factors , SARS-CoV-2 , COVID-19 Drug Treatment
19.
J Clin Med ; 9(9)2020 Aug 27.
Article in English | MEDLINE | ID: covidwho-739098

ABSTRACT

We aimed to assess the prevalence of and factors associated with anti- severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) positivity in a large population of adult volunteers from five administrative departments of the Liguria and Lombardia regions. A total of 3609 individuals were included in this analysis. Participants were tested for anti-SARS-CoV-2 antibodies [Immunoglobulin G (IgG) and M (IgM) class antibodies] at three private laboratories (Istituto Diganostico Varelli, Medical Center, and Casa della Salute di Genova). Demographic data, occupational or private exposure to SARS-CoV-2-infected patients, and prior medical history consistent with SARS-CoV-2 infection were collected according to a preplanned analysis. The overall seroprevalence of anti-SARS-CoV-2 antibodies (IgG and/or IgM) was 11.0% [398/3609; confidence interval (CI) 10.0%-12.1%]. Seroprevalence was higher in female inmates than in male inmates (12.5% vs. 9.2%, respectively, p = 0.002), with the highest rate observed among adults aged >55 years (13.2%). A generalized estimating equations model showed that the main risk factors associated with SARS-CoV-2 seroprevalence were the following: an occupational exposure to the virus [Odd ratio (OR) = 2.36; 95% CI 1.59-3.50, p = 0.001], being a long-term care facility resident (OR = 4.53; 95% CI 3.19-6.45, p = 0.001), and reporting previous symptoms of influenza-like illness (OR = 4.86; 95% CI 3.75-6.30, p = 0.001) or loss of sense of smell or taste (OR = 41.00; 95% CI 18.94-88.71, p = 0.001). In conclusion, we found a high prevalence (11.0%) of SARS-CoV-2 infection that is significantly associated with residing in long-term care facilities or occupational exposure to the virus. These findings warrant further investigation into SARS-CoV-2 antibody prevalence among the Italian population.

20.
Front Neurol ; 11: 845, 2020.
Article in English | MEDLINE | ID: covidwho-737645

ABSTRACT

In December 2019, an outbreak of illness caused by a novel coronavirus (2019-nCoV, subsequently renamed SARS-CoV-2) was reported in Wuhan, China. Coronavirus disease 2019 (COVID-19) quickly spread worldwide to become a pandemic. Typical manifestations of COVID-19 include fever, dry cough, fatigue, and respiratory distress. In addition, both the central and peripheral nervous system can be affected by SARS-CoV-2 infection. These neurological changes may be caused by viral neurotropism, by a hyperinflammatory and hypercoagulative state, or even by mechanical ventilation-associated impairment. Hypoxia, endothelial cell damage, and the different impacts of different ventilatory strategies may all lead to increased stress and strain, potentially exacerbating the inflammatory response and leading to a complex interaction between the lungs and the brain. To date, no studies have taken into consideration the possible secondary effect of mechanical ventilation on brain recovery and outcomes. The aim of our review is to provide an updated overview of the potential pathogenic mechanisms of neurological manifestations in COVID-19, discuss the physiological issues related to brain-lung interactions, and propose strategies for optimization of respiratory support in critically ill patients with SARS-CoV-2 pneumonia.

SELECTION OF CITATIONS
SEARCH DETAIL